

Benefit to the Program MRCSP supports DOE Program Goals

DOE Program Goal	MRCSP Approach/Benefit
Predict CO_2 storage capacity in geologic formations to within ±30%	Correlate geologic characterization and reservoir models with monitoring and regional mapping.
Demonstrate that 99% of CO_2 remains in the injection zones	Account for CO_2 during EOR operations Assess monitoring options for tracking and imaging CO_2 plume, storage and retention
Improve reservoir storage efficiency while ensuring containment effectiveness	Test in EOR fields in various life cycle stages and examine strategies for utilizing the pore space created by the oil and water production
Development of Best Practices Manuals (BPMs)	Contribute to BPMs through large-scale test and regional analysis across MRCSP
NETL	Ballele The Beningstood / Lemonstein

Project Overview Michigan Basin Large-Scale Test Goals and Objectives						
RCSP Goal	MRCSP Approach and Success Criteria					
Goal 1 – Prove Adequate Injectivity and Available Capacity	 Injecting 1 million metric tons of CO₂ in CO₂-EOR fields within permitted reservoir pressures Pressure analysis and modeling used to evaluate capacity 					
Goal 2 – Prove Storage Permanence	 Site selection to include impermeable caprock, geologic structure Seismic and well data used to evaluate storage mechanisms and containment Monitoring wells used to measure containment over time within the reef and immediate caprock 					
Goal 3 – Determine Aerial Extent of Plume and Potential Leakage Pathways	 Monitoring portfolio employed to understand migration Using monitoring data to compare to and validate plume models 					
4 NETL	Ballele Xa Baisca of Lawrier 4					

Michigan D

Michigan Basin Large-Scale Test Goals and Objectives

RCSP Goal	MRCSP Approach and Success Criteria
Goal 4 – Develop Risk Assessment Strategies	 Risk assessment for events, pathways, and mitigation planning Comparing predicted to actual field experience for all stages of the project
Goal 5 – Develop Best Practices	 Phase III builds on Phase II best practices in siting, risk management, modeling, monitoring, etc. Key emphasis is on operation and monitoring and scale-up to commercial-scale
Goal 6 – Engage in Public Outreach and Education	 Appropriate outreach efforts for both Phase II and Phase III sites as well as technology transfer and information sharing with stakeholders
5	Ballele 75e Berlingt of Lensenstein 5

Project Overview MRCSP scope of work is structured around six tasks						
Task 1	Regional Characterization: Develop a detailed actionable picture of the region's geologic sequestration resource base					
Task 2	Outreach: Raise awareness of regional sequestration opportunities and provide stakeholders with information about $\rm CO_2$ storage					
Task 3	Field Laboratory Using Depleted EOR Field: Pressurize a late-stage EOR field with CO_2 injection to test monitoring technologies and demonstrate storage potential					
Task 4	$\rm CO_2$ Storage Potential in Active EOR Fields: Monitor $\rm CO_2$ Injection and recycling in active EOR operations with different scenarios					
Task 5	$\rm CO_2$ Injection in New EOR Field(s): Monitor $\rm CO_2$ injection into an oil field that has not undergone any $\rm CO_2$ EOR to test monitoring technologies and demonstrate storage potential					
Task 6	Program Management					
6	rL Batterie Zie Bustens∮Izmoveten					

Monitoring Status – Late Stage Reef Currently in After Injection Monitoring Stage								
Activity	Before Injection	Early Injection	Mid Injection	Late Injection	After Injection			
CO ₂ flow accounting		Х	Х	Х	Х			
Pressure and temperature		х	x	х	х			
PNC logging	Х		Х		Aug 2016			
Borehole gravity	Х				Aug 2016			
Fluid sampling	Х		Х		Х			
Vertical seismic profile	Х				Sep 2016			
Microseismic	Х			Х				
InSAR (Satellite radar)	Х	Х	Х	Con	nplete			
Characterization Well Drilling					Sep 2016			
27 NETL Battelle Ta Battelle								

Regional Assessment Status Calculation of Prospective Stacked CO ₂ Storage R									Resource	
	Rome Formation P50 Prospective Resource		Lower C P50 F	Copper Riproperties	dge Formure		Basa P50 Pro	I sand Formation (3,904 Mt)		All Reservoirs in Study P50 Prospective Resource (19,877 Mb)
	늘 Preliminary da	ita –	do	not Q	uote	or cite	•	(elses m)		(To,orr my
	Formation	Mt CO2 /km3 Pore Volume Total Prosp				Prospec	tive CO2	Storage Reso	ESaline Depositional	
	Formation	P10	P50	P90	P10	P50	P90	Theoretical Max.	Esaline P50 (avg.)	SCREEN; IEAGHG, 2009)
	Beekmantown	5	18	43	652	2,137	5,227	97,207	2.20%	Dolomite: Unspecified
	Rose Run	5	20	61	188	757	2,305	30,320	2.50%	Clastics: Peritidal
	Upper Copper Ridge	5	18	42	436	1,462	3,498	66,236	2.21%	Dolomite: Unspecified
	Copper Ridge B	5	18	42	205	674	1,634	30,776	2.19%	Dolomite: Unspecified
	Lower Copper Ridge	5	17	42	1,090	3,561	8,637	163,846	2.17%	Dolomite: Unspecified
	Kerbel Sandstone	6	22	63	134	505	1,464	18,610	2.71%	Clastics: Delta
	Conasauga	5	17	42	393	1,321	3,194	29,480	4.48%	Dolomite: Unspecified
	Rome	5	18	42	1,639	5,556	13,281	250,824	2.22%	Dolomite: Unspecified
	Basal Sandstone	6	24	70	990	3,904	11,348	130,915	2.98%	Clastics: Shallow Shelf
44	NETL									Bailelie The Bostocast of Ismanution

